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Abstract

Operational space modeling and control are important igales for robot manipulation. A key element of operational
space control is theperational space inertia matrix (OSIMYhe OSIM matrix represents a mapping between end-
effector spatial forces and spatial accelerations. In tee of multiple end-effectors, the OSIM also encapsuldtes t
dynamics cross-coupling between the end-effectors. TH&®&trix is configuration dependent. The rich structure of
the OSIM for tree systems has been exploited by researabtreasélysis and the development of low order computational
algorithms. Extending such techniques to the OSIM for aedeain robotic systems is the focus of this short paper.
We derive explicit analytical expressions for the closkdic OSIM that reveals its close relationship to an extended
tree-system OSIM.

Keywords: robotics, multibody dynamics

1 Introduction

Operational space control has emerged as an increasingtyriamt approach for the modeling and control of multi-link
robotic systems [1, 2]. Operational space control focusethe dynamical behavior of the system reflected to the task
(end-effector) space during interactions with the tasledisj and the environment [2—-6]. For humanoid systems, such
interaction can involve arm end-effectors, while feet seas the end-effectors for legged systems. The set of eadteff
nodes define the operational space of the system. The cpnblgem requires managing the motion state as well as the
force interactions of the robotic system with task objecid #he environment.

The advantage of the operational space control approactjamespace control is that the control problem is posed
directly in terms of task space variables. Analogous todig gpace mass matrix which defines the relationship betwee
the joint space accelerations and torquespierational space inertia matrix (OSIMjefines the mapping between end-
effector spatial accelerations and spatial forces. Urtlilejoint-space mass matrix which is always well defined and
non-singular for serial and tree systems, the OSIM may nigt.ek contrast, its inverse, referred to as tperational
space compliance matrix (OSChg)always well-defined.

An issue for operational space control has been the signifazzalytical and computational complexity of the OSCM.
The OSCM is defined in terms of the mass matrix inverse and eacomplex and expensive to evaluate. However,
such hurdles have been addressed and the rich analyticeist of the OSCM is well understood for serial [7—9] and
tree-topology robotic systems [10—13]. These analytitsights have led to the development of recursive computalio
algorithms for serial and tree OSCM that avoid the expliega for the mass matrix inverse. These algorithms reduce the
computational cost from cubic to a linear function of the tn@mof degrees of freedom in the system.

Several researchers have explored the generalizationeshtipnal space control and the OSCM to closed-chain
systems. Closed-chain topology in robotics systems cae &om structural elements such as four-bar linkagesngduri
coordinated multi-arm manipulation task execution, dgiminulti-finger grasping, from ground interactions of wheele
and legged mobile platforms etc. The additional constsaiastrict the allowable motion for the system. The joint
space system mass matrix is singular for these systems aadhé tree OSCM concept and computational techniques
do not directly extend to closed-chain topologies. Refeedid4] describes an extension by projecting the joint space
dynamics to a set of independent coordinates. As observedarence [15], the disadvantage of the projected dynamics
is its added additional complexity and the loss of the nastracture of the OSCM that is important for control. This
reference instead exploits the parallels between thetatriof the closed-chain dynamics and operational spacandips
to handle systems with general holonomic constraints.&dlahain operational space control has also have beeredppli
to systems with contact constraints [16] and for full-bodyirol of humanoid robots [17].

The main contribution of this paper is in establishing thesel relationship between the closed-chain OSCM and an
extended OSCM for a related tree system. This connectionsojhee door for the application of analytical insights and
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computational techniques for tree systems to closed-cb8i@M. We also develop analytical concepts and mathematical
expressions for the closed-chain OSCM and the necessadjtioms for its positive definiteness and the existence of
the OSIM. The paper is organized as follows. Section 2 intced the OSIM and OSCM for tree topology systems. In
Section 3 we describe the dynamics of closed-chain robgsitems. Section 4 extends the notion of OSCM to closed-
chain systems and develops analytical expressions far 8ettion 5 we specialize to the important case where thargos
constraints are loop constraints, and show that the clokath OSCM is closely related to the OSCM for a related tree
system.

2 Tree-Topology OSIM

Consider a tree-topology robotic system withinks andN degrees of freedom, where the bodies are connected to each
other via hinges. The number of such end-effector nodesristddn.. The operational (or task) space of a system
is defined by the configuration of the end-effector nodes ensistem. Let. € R®"< denote the stacked vector of
6-dimensional spatial velocities of all the. end-effector nodes. The relationship betwatnand thed € R stacked
vector of joint velocities is given by .

Ve =70 (1)

whereJ. € RN denotes the combined Jacobian matrix for all the end-effewides.d. is formed by a row-wise
stacking of the individual 6 N Jacobian matrices for each of the individual end-effectufes.

Now consider known spatial forcgs € R being applied to the system at the end-effector nodes. Thegpace
equations of motion for the tree-topology systentare

M(0)0+€(6,0) —Jife =T 2

where the configuration dependent, symmetric mai®0) € R™N*N is themass matriof the system@(6,0) € RN
denotes the velocity dependent Coriolis and gyroscopicefoand gravitational forces vector, did= R denotes the
applied joint torques. The mass matrix is positive-defiaitd invertible for tree-topology systems.

Instead of the joint space view, operational space dynacdhiagacterizes the system dynamics as reflected to the end-
effector nodes. It defines the relationship betwgeand thex, € R®"< spatial accelerations of the end-effector nodes.
Differentiating Eq. 1 with respect to time, we obtain

Ke é 3eé+geé (3)
Pre-multiplying both sides of Eq. 2 .M~ and using Eq. 3 leads to

Ke 2:3 refe + gerl(T_ G) + 569 (4)

where
Fe 2 M55 € ROmexone (5)

Eq. 4 defines the operational space dynamics for a tree tgpagstem. I, is referred to as theperational space
compliance matrix (OSCMbpr the end-effector nodes in the tree-topology systeminitsrse, when it exists, is referred
to as theoperational space inertia matrix (OSIMQr the end-effector nodes. The invertibility Bf does not depend on
de being invertible — only thag. have full row-rank, or equivalently that the null-spacejpfconsist of just the trivial
zero elementl, is singular when this null space is non-trivial. All endesftor forceg. belonging to the null-space are
squeezdorces, in the sense that they only contribute to internades, and no motion, since they have no effect on the
«. end-effector spatial accelerations. The OSIM always sf@ta free-floating system with a single end-effector node
since it is simply the & 6 articulated body inertia with the end-effector node’sspaibody serving as the base body [13].

Since our focus is on the OSCM, with no loss in generality wepdify the further discussion by assuming that the
system is at rest and the joint torques and gravity are zexd®), & 0 and7T = 0. The velocity and torque dependent terms
such a2 andj. become zero with this assumption.

3 Closed-Chain Systems

Closed-chain systems can be viewed as tree-topology systehject to additional bilateral closure constraints an th
system. Such closure constraints can be eitidonomicor non-holonomic In the velocity domain the constraint
equations can be expressed as

G.(6,t)06 =0 (6)

1The A* notation denotes the transpose of thenatrix.
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with G.(0,t) € R™*N denoting the constraint matrix. Since we are focusing harthe OSCM, we assume without
any loss in generality thaf . (0, t) is time-invariant, i.e.G.(6,t) = G.(0). We assume that . (0) is afull-rank matrix.
A notable point about Eq. 6 is that it is linear in the geneeivelocity coordinates. These constraints effectivetiuce
the generalized velocities for the system frontto an(N — n.) dimensional linear space,

The dynamics of closed-chain systems can be obtained byfyimaglthe tree system dynamics in Eq. 2 to include the
effect of the closure constraints Miagrange multipliersA € R™<, as follows

M(0)6 — Jif. — GE(O)A =0

G.(0)6=0 Q)

The—G}(0)A term in the first equation represents the generalized f@gsing from the presence of closure constraints.
The following lemma describes a solution for the closedwlghamics in Eq. 7.

Lemma 1 Closed-chain forward dynamics solution
The closed-chain dynamics generalized accelerations ir7Eeqn be expressed as

6= {1- G [6M 6] T 6t} e 8)
Proof: See[10, 13, 15].

4 Closed-chain OSCM

For tree topology systems, Eq. 4 and Eq. 5 define the opesgdtspace relationship between theend-effector node
spatial forces and theix. spatial accelerations, and the expression for the aseddiatOSCM. We generalize this
notion, and define a matrik € R®<*é"e as being the OSCM for a closed-chain system if it satisfiesati@ogous
relationship

xe = Ife 9

for the system. The following lemma provides an explicitregsion forl.

Lemma 2 The OSCM with closure constraints
The OSCM for the end-effector nodes for a closed-chainmsystgiven by

F=Te—dM1G: [GeM 1G] PG M1g: (10)
which is the Schur complemémtf the G. M LG} sub-block matrix in the matriX defined as

—1rx*
36] MHFE, G =< e JeN” G ) (11)

A
X =
Ge GM g5 G M LG

Proof: Multiplying both sides of Eq. 8 bff. and using the expression for the end-effector spatial accelerations from
Eq. 3 results in Eq. 9 with

r=g.mt {1 —Gr[eem e GCM*l} g 12)

Expanding out the right hand side and using Eq. 5 leads to&q. 1

Observe that the Eq. 10 expression forft@osed-chain OSCM depends on theree OSCM for the end-effector nodes.
The expression in the second equation in Eq. 12 is also dkamd used in [16]. ThiX matrix is also used in control
schemes for managing both the end-effector and internaitiint forces [15].

The following lemma shows thétis always positive semi-definite and is less positive-defitiian thd', tree OSCM.

A B L ) s ' .
2For a square block matriX = ( c D ) with invertible D, the Schur complement ad in Y is defined as thé. — BD ~1C matrix.
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Lemma 3 Relationship betweenl" and I,

le2T>0 (13)

Proof: TheT, > T relationship follows directly by using the fact th&tM G} [G.M 1G] 1 GM1g% is always
positive semi-definite in Eq. 10.
To establish " > 0, define the matri®® = G [GCM*le]fl G.M ! and observe thak? = P, implying thatP

is a projection matrix. Sinc@ is a projection matrix, so i8 2 1_p P, is also referred to as thmass-weighted
constraint null space projection matr[&5]. It is easy to verify that

M P =PM '=P*M 'PandP*M P, =0 (14)
UsingP, the expression fdr in Eq. 12 can be restated as

r 2 gty 2 og.piMtPLgn (15)

The positive semi-definiteness bfollows from this symmetric expression.

This lemma is in line with our intuitive expectation that thgstem with closure constraints should be at least asistiff,
not stiffer than the tree system alone without the closurestaints.

I" needs to be positive definitive for the corresponding OSIM, to exist. Itis clear from Eqg. 15 tha&twill be positive
definite if and only ifJ.P* has full row rank. This can be expensive to verify given theptexity of evaluating® since
the mass matrix inverse is required. The following lemmadkses simpler conditions under whi€hs positive-definite
and hence invertible.

Lemma 4 Positive definiteness of thé OSCM

I is positive definite if and only i ge has full row-rank.

Cc

Proof: Recall that is the Schur complement of tématrix in Eq. 11. From matrix theory, it is known that the Schu
complement for a symmetric semi-definite matrix is positheéinite if and only if the full matrix is positive definite [1.8
I is therefore positive definite if and only is positive definite. Sinc@( ! is always positive definiteX is positive

(54

Cc

definite if and only if [f; ] has full row-rank, and the result follows.

de

This lemma establishes the conditions for the non-singulaf T". The full row-rank requirement o of course

Cc

requires thay. itself have full row-rank and hence that thg tree OSCM itself be non-singular. Moreover, the full

row-rank requirement o ge is equivalent to requiring that the null-space@f, G] consist of only the zero element.

C
This is a generalization of the condition for tree-topoleggtems where a similar condition only applied to the npdee
of Ji. When the null-space dff;, G}] is non-trivial, I' is singular. Moreover, all elements of the null-space define
the squeeze forces for the constrained system. To seedhiss hssume th{tX

] is an element of the null-space, and
Y

therefore

Jex+Gy=0 = Jix =—Gly
Using thisx for f. in Eq. 8 leads t® = 0. Hencef. = x is a squeeze end-effector force for the system since it dess e
the system motion.

Clearly this sub-space of squeeze forces for the closeitslyatem embeds the tree-system squeeze forces defined
by the null-space of%. That is, ifz is a squeeze force for the tree system, thenust be in the null-space ¢f, and

Z( . . - . .
therefore 0 is in the null-space ofg:, G;]. As a consequence, the multi-link structure with closurest@ints can

resist a larger space of end-effector forces than just d#eedystem without the closure constraints.

3This proof is based on a reviewer's suggestion and is simplénzore elegant than the original one proposed by the author.
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5 Loop closure constraints

So far, we have not made any particular assumptions on theenat, or the physical origin of, the closure constraints.
In this section, we look at the important special case whegeconstraints are between body nodes in the tree-topology
system. Such closure constraints between body nodes aneedtto adoop constraints. An example is illustrated in
Figure 1. Generally, these inter-node constraints areetfiy hinges that allow non-zero relative spatial velositieat

internal loop loop closure
constraint

a. b.

Figure 1. Example system with (a) closed-chain topology, and (b) after decangpa#o a tree topology
system with a loop closure constraint.

belong to a subspace defined by hinge joint map matrices.nBtarice, a loop closure constraint between a body rode
and the inertial frame is characterized by an equation ofaha

QV, =0

whereV,, € RS is the spatial velocity of node andQ € R*6 (with a < 6), is the constraint matrix. A rigid constraint,
where the node is not allowed to move has an identiymatrix. On the other hand, a loop constraint on the relative
spatial velocity of a pair of body nodesandy, can be expressed as

Qrel [V, — V] =0

This can be restated as
Vi
VU

A

QV, = 0whereQ £ [QTe!, —Qm¢!], v, £ (16)

When thex andy nodes are constrained to rigidly follow each other, ¥i&' matrix is the identity matrix.

More generally, let us assume that theremagesuch loopclosurebody nodes with?,, € R™v denoting the stacked
vector of spatial velocities of these nodes. Let the closorestraints be defined on pairs of these nodal spatial edsci
via a constraint matriQ € R™<*%"v such that

av, =0 a7)

With gy, € R+ >N denoting the velocity Jacobian matrix for these closureesade have

Ve=3v0 = 930 £ 0= G, 2 Q3 (18)

From Eq. 7 it follows that the generalized forces from theraage multipliers are given by
GIOA=Jifs where f, 2 Q*A (19)

fu is the stacked vector of constraint spatial forces at thp-ldosure nodes arising from the loop closure constraints.
Unlike the knownf. end-effector forces, thf, loop closure forces on the system arat available explicitly but are
instead implicitly defined via tha Lagrange multipliers. The following lemma provides an egsion for the OSCM for
the system with loop constraints.

Lemma5 The OSCM with loop constraints
The OSCM for the end-effector nodes for the system with loogtaints is given by

r2 gt {1 — 430" [QayM g0t ngjvrl} 7 (20)
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Proof: Eg. 20 results from substituting Eqg. 18 into Eq. 10.

The Eq. 20 expression fdoris complex and requires and involves the mass matrix invemgethe end-effector Jacobian
matrices.

5.1 Relationship ofl" to a tree OSCM

We now develop an alternative expressionffdhat is based upon a tree OSCM. Towards this, define the fedibian,

J+ for the combinech 2 n. + ny set of end-effector and closure nodgs.maps thed generalized velocities to the
V¢ € R spatial velocities of this full set of nodes. Thus

Ve
Vo

v, &

=36 = g 2° [ge] € ROMN (21)
b

The Eq. 5 expression for tree OSCM can be extended to the 8&MXor the combined set of end-effector and closure
nodesl’y € R x6nr ysing thed; full Jacobian as

e T
e=gMgr=( ¢ < 22
f Hf Hf <r:b rb ( )
where
My £ Gu 1 € RO xone 9
and Tep 2 g 1G5 € ROMexOne

Observe thaty in Eq. 22 is defined in terms of tH& tree OSCM for just the end-effector nodes andithéree OSCM
for just the closure nodes. Thig, matrix represents the cross-coupling between the endteffand closure nodes.

Lemma 6 Simpler expression forl" with loop constraints
The OSCM for the end-effector nodes for the system with loogt@ints is given by

M =T, —lepQ* [QM, Q71 QT (24)

Proof: The result is obtained by substituting Eq. 23 into Eq. 20.

This alternate expression for tiieOSCM with loop constraints is directly related to sub-bledk thel’s tree OSCMT
is the Schur complement &f in the X matrix in Eq. 11, which we denoté, for loop-constraints, and it has the simpler

form
T, [ep Q* I O I O
O Iy (25)
aQrx, Qlrp9* 0 Q 0 O

We now discuss the significance of this and the earlier reguthis paper:

e Unlike Eq. 20, the expression in Eq. 24 involves neither tlassmatrix inverse nor the node Jacobians explicitly,
and depends on the sub-blocks of tharee OSCM. It clarifies the previously unknown, but intimeg&ationship
between the closed-chain OSCM and an extended tree OSCMimydoththe end-effector and the closure nodes.
The Eqg. 24 expression also separates the contributionseatlttsure nodes (through their OSCM sub-matrices)
from that of the specific nature of the closure constrainis tfive Q matrix). When there are no closure constraint,
Q vanishes and reduces td.

e Important structural and analytical implications of Eq.&24 that” does not require either the mass matrix inverse
nor the Jacobians as implied by the earlier Eq. 12 expressibis observation is based on the spatial operator
analysis that has established that the tree OSCM matrixJ813] can be obtained directly from articulated body
inertias without the need for the mass matrix inverse or #moBdian. This applies to thig tree OSCM, and
consequently via Eq. 24 also to the closed-chain
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e The fact thatl” can be obtained from a tree OSCM also has important compuogdtimplications. the following two
step procedure can be used to compute the closed Ehé&#) compute thé full tree OSCM using any available
tree OSCM computational procedure; and (b) use the subkbloil; in Eq. 24 to evaluat€. This is significant
because low-order techniques are available for computagg®SCM matrices that can be used to efficiently carry
out the first step. In particular, spatial operator recesilgorithms described in [10, 13] describe the lowest-
order available algorithm for tree OSCM. An alternativerspg-based algorithm for tree OSCM together with
computational cost analysis can be found in reference Q#jer recursive algorithms are described in references
[9, 11]. It is noteworthy that the computational cost of thedgorithms scales just linearly with the number of
bodies.

e Loop-constraints are an important, but a special case efioboconstraints. More generally, the closure constraints
can consist of loop as well as non-loop constraints. We destiere the extensions to this more general case. To
handle non-loop constraints, tkie closure-constraint matrix in Eq. 18 can be extended to thefong partitioned

form
[ Qv
o)

whereG,, corresponds to the non-loop closure constraints. UsirsgithiEq. 11 results in the following expression
for the X matrix:

re rebQ* 8eG;k1
X = aryy, Qly Q* QH*{)J\/f_lGT1
Gndi G M 17, 0" Ganlel
(27)
25 X1 { deGn w
= Qﬂbj\/[_lGT1

[Gnds, G 1330

G M1G,

From the second expression, it is clear that the loop-caimé$iX; matrix from Eq. 25 is a sub-matrix of this overall
X matrix, and our earlier observations about its OSCM basedtsire ofX; apply here as well. Denoting this lower

block aszZ
ar,o* QI MG,
z =2 o Go M Gn (28)
GaM™J5Q" G MG},
the X matrix takes the form
e | IFev0*, 3Gy
X 222 Tar, , (29)
Gnds
and thus using the Schur complement relationship from Le@yfas given by
ar:
I'= re - [rebQ*a HeGi] Zil eb* (30)
Gnde

This form allows us to takes full advantage of the tree OSCbhigues to comput&, for the loop closure
constraints. It also isolates the non-loop constraintkdao they can be further analyzed and optimized once the
specific form and structure of the non-loop constraints &lakle.

e While, much of our discussion has focused on the OSCM, Lemrastéblishes the necessary conditionlféo be
non-singular and the closed-chain OSIM to exist.

6 Conclusions

This paper studies the OSIM and OSCM matrices for closeii¢bpology robotic systems. The main contribution of this
paper is to show that when closure constraints are loop Iconts, the closed-chain OSCM is closely related, via a 8chu
complement, to the tree OSCM for the combined set of endsteifeind closure nodes. This relationship has significant
implications since it allows the application of the rich s€tvailable analytical and computational implications tiee
OSCM to closed-chain systems. We also discuss the posgiueiténess properties of the closed-chain OSCM.
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